Task
Given a sorted array of integers a, your task is to determine which element of a is closest to all other values of a. In other words, find the element x in a, which minimizes the following sum:
abs(a[0] - x) + abs(a[1] - x) + ... + abs(a[a.length - 1] - x)
(where abs denotes the absolute value)
If there are several possible answers, output the smallest one.
Example
-
For
a = [2, 4, 7], the output should beabsoluteValuesSumMinimization(a) = 4.
forx = 2, the value will beabs(2 - 2) + abs(4 - 2) + abs(7 - 2) = 7.
forx = 4, the value will beabs(2 - 4) + abs(4 - 4) + abs(7 - 4) = 5.
forx = 7, the value will beabs(2 - 7) + abs(4 - 7) + abs(7 - 7) = 8.
The lowest possible value is whenx = 4, so the answer is4. -
For
a = [2, 3], the output should beabsoluteValuesSumMinimization(a) = 2.
forx = 2, the value will beabs(2 - 2) + abs(3 - 2) = 1.
forx = 3, the value will beabs(2 - 3) + abs(3 - 3) = 1.
Because there is a tie, the smallestxbetweenx = 2andx = 3is the answer.
Input/Output
-
[execution time limit]
4 seconds (py3) -
[input] array.integer a
A non-empty array of integers, sorted in ascending order.
Guaranteed constraints:1 ≤ a.length ≤ 1000,-106 ≤ a[i] ≤ 106. -
[output] integer
An integer representing the element fromathat minimizes the sum of its absolute differences with all other elements.
My Solution
def absoluteValuesSumMinimization(a):
minDstnc = a[0] * len(a) * -1
minElmnt = a[0]
preSum = 0
for i in range(len(a)):
if a[i] * (2 * i - len(a)) - 2 * preSum < minDstnc:
minDstnc = a[i] * (2 * i - len(a)) - 2 * preSum
minElmnt = a[i]
preSum += a[i]
return minElmnt